JEE Advance - Mathematics (2006 - No. 31)

For a twice differentiable function $$f(x),g(x)$$ is defined as $$4\sqrt {65} g\left( x \right) = \left( {f'{{\left( x \right)}^2} + f''\left( x \right)} \right)\,\,f\left( x \right)$$ on $$\,\,\,\left[ {a,\,\,\,e} \right].$$ If for $$a < b < c < d < e,\,f\left( a \right) = 0,f\left( b \right) = 2,f\left( c \right) = - 1,f\left( d \right) = 2,f\left( e \right) = 0$$ then find the minimum number of zeros of $$g(x)$$.
2
3
4
5
6

Comments (0)

Advertisement