JEE Advance - Mathematics (2001 - No. 1)
Let $${a_1}$$, $${a_2}$$,.....,$${a_n}$$ be positive real numbers in geometric progression. For each n, let $${A_n}$$, $${G_n}$$, $${H_n}$$ be respectively, the arithmetic mean , geometric mean, and harmonic mean of $${a_1}$$,$${a_2}$$......,$${a_n}$$. Find an expression for the geometric mean of $${G_1}$$,$${G_2}$$,.....,$${G_n}$$ in terms of $${A_1}$$,$${A_2}$$,.....,$${A_n}$$,$${H_n}$$,$${H_1}$$,$${H_2}$$,........,$${H_n}$$.
$$G = (A_1A_2...A_n H_1H_2...H_n)^{\frac{1}{n}}$$
$$G = (A_1A_2...A_n H_1H_2...H_n)^{\frac{1}{2n}}$$
$$G = (A_1+A_2+...+A_n + H_1+H_2+...+H_n)^{\frac{1}{2n}}$$
$$G = \frac{A_1+A_2+...+A_n}{H_1+H_2+...+H_n}$$
$$G = (A_1A_2...A_n + H_1H_2...H_n)^{\frac{1}{2n}}$$
Comments (0)
