JEE Advance - Mathematics (2000 - No. 1)
If $$\alpha ,\,\beta $$ are the roots of $$a{x^2} + bx + c = 0$$, $$\,\left( {a \ne 0} \right)$$ and $$\alpha + \delta ,\,\,\beta + \delta $$ are the roots of $$A{x^2} + Bx + c = 0,$$ $$\left( {A \ne 0\,} \right)\,$$ for some contant $$\delta $$, then prove that $${{{b^2} - 4ac} \over {{a^2}}} = {{{B^2} - 4Ac} \over {{A^2}}}$$.
The statement is always false.
The statement is true only if a = A.
The statement is true only if b = B.
The statement is always true.
The truth of the statement depends on the value of δ.
Comments (0)
