JEE Advance - Mathematics (1998 - No. 36)
Suppose $$f(x)$$ is a function satisfying the following conditions
(a) $$f(0)=2,f(1)=1$$,
(b) $$f$$has a minimum value at $$x=5/2$$, and
(c) for all $$x$$, $$$f'\left( x \right) = \matrix{ {2ax} & {2ax - 1} & {2ax + b + 1} \cr b & {b + 1} & { - 1} \cr {2\left( {ax + b} \right)} & {2ax + 2b + 1} & {2ax + b} \cr } $$$
where $$a,b$$ are some constants. Determine the constants $$a, b$$ and the function $$f(x)$$.
(a) $$f(0)=2,f(1)=1$$,
(b) $$f$$has a minimum value at $$x=5/2$$, and
(c) for all $$x$$, $$$f'\left( x \right) = \matrix{ {2ax} & {2ax - 1} & {2ax + b + 1} \cr b & {b + 1} & { - 1} \cr {2\left( {ax + b} \right)} & {2ax + 2b + 1} & {2ax + b} \cr } $$$
where $$a,b$$ are some constants. Determine the constants $$a, b$$ and the function $$f(x)$$.
$$a = 1/4, b = -5/4, f(x) = (1/4)x^2 - (5/4)x + 2$$
$$a = -1/4, b = 5/4, f(x) = (-1/4)x^2 + (5/4)x + 2$$
$$a = 1/2, b = -5/2, f(x) = (1/2)x^2 - (5/2)x + 2$$
$$a = -1/2, b = 5/2, f(x) = (-1/2)x^2 + (5/2)x + 2$$
$$a = 1, b = -5, f(x) = x^2 - 5x + 2$$
Comments (0)
