JEE Advance - Mathematics (1993 - No. 12)

For $$0 < \phi < \pi /2,$$ if
$$x = $$$$\sum\limits_{n = 0}^\infty {{{\cos }^{2n}}\phi ,y = \sum\limits_{n = 0}^\infty {{{\sin }^{2n}}\phi ,\,\,\,\,z = \sum\limits_{n = 0}^{} {{{\cos }^{2n}}\phi {{\sin }^{2n}}\phi } } } \infty $$ then
$$xyz = xz + y$$
$$xyz = xy + z$$
$$xyz = x + y + z$$
$$xyz = yz + x$$

Comments (0)

Advertisement