JEE Advance - Mathematics (1986 - No. 11)

If $${C_r}$$ stands for $${}^n{C_r},$$ then the sum of the series $${{2\left( {{n \over 2}} \right){\mkern 1mu} !{\mkern 1mu} \left( {{n \over 2}} \right){\mkern 1mu} !} \over {n!}}\left[ {C_0^2 - 2C_1^2 + 3C_2^2 - } \right......... + {\left( { - 1} \right)^n}\left( {n + 1} \right)C_n^2\mathop ]\limits^ \sim \,,$$
where $$n$$ is an even positive integer, is equal to
0
$${\left( { - 1} \right)^{n/2}}\left( {n + 1} \right)$$
$${\left( { - 1} \right)^{n/2}}\left( {n + 2} \right)$$
$${\left( { - 1} \right)^n}n$$

Comments (0)

Advertisement