JEE Advance - Mathematics (1985 - No. 3)
If $$\left| {\matrix{
a & {{a^2}} & {1 + {a^3}} \cr
b & {{b^2}} & {1 + {b^3}} \cr
c & {{c^2}} & {1 + {c^3}} \cr
} } \right| = 0$$ and the vectors
$$\overrightarrow A = \left( {1,a,{a^2}} \right),\,\,\overrightarrow B = \left( {1,b,{b^2}} \right),\,\,\overrightarrow C = \left( {1,c,{c^2}} \right),$$ are non-coplannar, then the product $$abc=$$ .......
$$\overrightarrow A = \left( {1,a,{a^2}} \right),\,\,\overrightarrow B = \left( {1,b,{b^2}} \right),\,\,\overrightarrow C = \left( {1,c,{c^2}} \right),$$ are non-coplannar, then the product $$abc=$$ .......
0
1
-1
2
-2
Comments (0)
