JEE Advance - Mathematics (1985 - No. 26)
If $${f_r}\left( x \right),{g_r}\left( x \right),{h_r}\left( x \right),r = 1,2,3$$ are polynomials in $$x$$ such that $${f_r}\left( a \right) = {g_r}\left( a \right) = {h_r}\left( a \right),r = 1,2,3$$
and $$F\left( x \right) = \left| {\matrix{ {{f_1}\left( x \right)} & {{f_2}\left( x \right)} & {{f_3}\left( x \right)} \cr {{g_1}\left( x \right)} & {{g_2}\left( x \right)} & {{g_3}\left( x \right)} \cr {{h_1}\left( x \right)} & {{h_2}\left( x \right)} & {{h_3}\left( x \right)} \cr } } \right|$$ then $$F'\left( x \right)$$ at $$x = a$$ is ...........
and $$F\left( x \right) = \left| {\matrix{ {{f_1}\left( x \right)} & {{f_2}\left( x \right)} & {{f_3}\left( x \right)} \cr {{g_1}\left( x \right)} & {{g_2}\left( x \right)} & {{g_3}\left( x \right)} \cr {{h_1}\left( x \right)} & {{h_2}\left( x \right)} & {{h_3}\left( x \right)} \cr } } \right|$$ then $$F'\left( x \right)$$ at $$x = a$$ is ...........
$$1$$
$$0$$
$$-1$$
$$2$$
$$a$$
Comments (0)
