JEE Advance - Mathematics (1984 - No. 31)

If $$\alpha $$ be a repeated root of a quadratic equation $$f(x)=0$$ and $$A(x), B(x)$$ and $$C(x)$$ be polynomials of degree $$3$$, $$4$$ and $$5$$ respectively,
then show that $$\left| {\matrix{ {A\left( x \right)} & {B\left( x \right)} & {C\left( x \right)} \cr {A\left( \alpha \right)} & {B\left( \alpha \right)} & {C\left( \alpha \right)} \cr {A'\left( \alpha \right)} & {B'\left( \alpha \right)} & {C'\left( \alpha \right)} \cr } } \right|$$ is
divisible by $$f(x)$$, where prime denotes the derivatives.
f(x)
(x-\alpha)
(x-\alpha)^2
(x-\alpha)^3
A(x)B(x)C(x)

Comments (0)

Advertisement