JEE Advance - Mathematics (1982 - No. 4)
If $$A$$ and $$B$$ are two events such that $$P\left( A \right) > 0,$$ and $$P\left( B \right) \ne 1,$$ then $$P\left( {{{\overline A } \over {\overline B }}} \right)$$ is equal to
$$1 - P({A \over B})$$ (Here $$\overline A $$ and $$\overline B $$ are complements of $$A$$ and $$B$$ respectively).
$$1 - P({{\overline A } \over B})$$ (Here $$\overline A $$ and $$\overline B $$ are complements of $$A$$ and $$B$$ respectively).
$${{1 - P\left( {A \cup B} \right)} \over {P\left( {\overline B } \right)}}$$ (Here $$\overline A $$ and $$\overline B $$ are complements of $$A$$ and $$B$$ respectively).
$${{P\left( {\overline A } \right)} \over {P\left( {\overline B } \right)}}$$ (Here $$\overline A $$ and $$\overline B $$ are complements of $$A$$ and $$B$$ respectively).
Comments (0)
