JEE Advance - Mathematics (1981 - No. 28)
Evaluate $$\int {\left( {{e^{\log x}} + \sin x} \right)\cos x\,\,dx.} $$
x \cos x + \sin x - \frac{1}{4}\cos 2x + C
x \sin x - \cos x + \frac{1}{4}\cos 2x + C
x \sin x + \cos x - \frac{1}{4}\cos 2x + C
x \cos x - \sin x - \frac{1}{4}\cos 2x + C
x \sin x + \cos x + \frac{1}{4}\cos 2x + C
Comments (0)
