JEE Advance - Mathematics Hindi (2023 - Paper 2 Online - No. 13)

माना कि $C_1$ एक वृत्त है जिसकी त्रिज्या 1 और केंद्र मूल बिंदु है। माना कि $C_2$ एक वृत्त है जिसकी त्रिज्या $r$, जहाँ $1 < r < 3$ है, और केंद्र बिंदु $A=(4,1)$ है। $C_1$ एवं $C_2$ की दो भिन्न उभयनिष्ट स्पर्श रेखाएं (distinct common tangents) $P Q$ एवं $S T$ खींची जाती हैं। स्पर्श रेखा $P Q$, वृत्त $C_1$ को $P$ पर और वृत्त $C_2$ को $Q$ पर स्पर्श करती है। स्पर्श रेखा $S T$, वृत्त $C_1$ को $S$ पर और वृत्त $C_2$ को $T$ पर स्पर्श करती है। रेखा खंडों $P Q$ एवं $S T$ के मध्य बिन्दुओं को मिलाकर एक रेखा बनाई जाती है जो $x$-अक्ष को बिंदु $B$ पर मिलती है | यदि $A B=\sqrt{5}$, तब $r^2$ का मान है
Answer
2

Comments (0)

Advertisement