JEE Advance - Mathematics Hindi (2019 - Paper 2 Offline - No. 11)

माना कि किसी धनात्मक पूर्णांक (positive integer) $$n$$ के लिए

$$\operatorname{det}\left[\begin{array}{cc} \sum_\limits{k=0}^{n} k & \sum_\limits{k=0}^{n}{ }^{n} C_{k} k^{2} \\ \sum_\limits{k=0}^{n}{ }^{n} C_{k} k & \sum_\limits{k=0}^{n}{ }^{n} C_{k} 3^{k} \end{array}\right]=0 .$$

तब $$\sum_\limits{k=0}^{n} \frac{{ }^{n} C_{k}}{k+1}$$ बराबर ________

Answer
6.20

Comments (0)

Advertisement