JEE Advance - Mathematics Hindi (2019 - Paper 2 Offline - No. 11)
माना कि किसी धनात्मक पूर्णांक (positive integer) $$n$$ के लिए
$$\operatorname{det}\left[\begin{array}{cc} \sum_\limits{k=0}^{n} k & \sum_\limits{k=0}^{n}{ }^{n} C_{k} k^{2} \\ \sum_\limits{k=0}^{n}{ }^{n} C_{k} k & \sum_\limits{k=0}^{n}{ }^{n} C_{k} 3^{k} \end{array}\right]=0 .$$तब $$\sum_\limits{k=0}^{n} \frac{{ }^{n} C_{k}}{k+1}$$ बराबर ________
Answer
6.20
Comments (0)
