JEE Advance - Mathematics Hindi (2019 - Paper 1 Offline - No. 16)
यदि
$$I=\frac{2}{\pi} \int_\limits{-\pi / 4}^{\pi / 4} \frac{d x}{\left(1+e^{\sin x}\right)(2-\cos 2 x)}$$
तब $$27~ I^{2}$$ बराबर ___________
Answer
4
Comments (0)

यदि
$$I=\frac{2}{\pi} \int_\limits{-\pi / 4}^{\pi / 4} \frac{d x}{\left(1+e^{\sin x}\right)(2-\cos 2 x)}$$
तब $$27~ I^{2}$$ बराबर ___________