JEE Advance - Mathematics Hindi (2017 - Paper 2 Offline - No. 12)
यदि $$f(x) = {{1 - x(1 + |1 - x|)} \over {|1 - x|}}\cos \left( {{1 \over {1 - x}}} \right)$$
x $$ \ne $$ 1 के लिए। तब
x $$ \ne $$ 1 के लिए। तब
$$\mathop {\lim }\limits_{x \to {1^ + }} f(x)$$ = 0
$$\mathop {\lim }\limits_{x \to {1^ - }} f(x)$$ does not exist
$$\mathop {\lim }\limits_{x \to {1^ - }} f(x)$$ = 0
$$\mathop {\lim }\limits_{x \to {1^ + }} f(x)$$ does not exist
Comments (0)
