JEE Advance - Chemistry (2025 - Paper 2 Online - No. 10)
The solubility of barium iodate in an aqueous solution prepared by mixing 200 mL of 0.010 M barium nitrate with 100 mL of 0.10 M sodium iodate is $\boldsymbol{X} \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}$. The value of $\boldsymbol{X}$ is ____________.
Use: Solubility product constant $\left(K_{\mathrm{sp}}\right)$ of barium iodate $=1.58 \times 10^{-9}$
Explanation

Calculate the concentration of iodate ions $\left[\text{IO}_3^-\right]$ in the equilibrium mixture:
The concentration in the prepared solution is given by:
$ \left[\text{IO}_3^-\right]_{\text{eqm}} = \frac{6}{300} = 0.02 \, \text{M} $
Write the expression for the solubility product constant ($ K_{\text{sp}} $) for barium iodate:
$ K_{\text{sp}} = [\text{Ba}^{2+}][\text{IO}_3^-]^2 $
Rearrange to solve for the concentration of barium ions $[\text{Ba}^{2+}]$:
$ [\text{Ba}^{2+}] = \frac{1.58 \times 10^{-9}}{(0.02)^2} = 3.95 \times 10^{-6} \, \text{M} $
The solubility of $\text{Ba}(\text{IO}_3)_2$, which is the same as the concentration of barium ions in this context, is:
$ X = 3.95 $
Thus, the solubility constant $ X $ is $ 3.95 $, and the solubility of barium iodate is $ 3.95 \times 10^{-6} \, \text{mol dm}^{-3} $.
Comments (0)
