JEE Advance - Chemistry (2024 - Paper 2 Online - No. 2)
Explanation
To find the value of $ X $ in the metal deficient oxide sample $ M_x Y_2 O_4 $, where $ M $ is present in both +2 and +3 oxidation states and $ Y $ is in the +3 oxidation state, and given that the fraction of $ M^{2+} $ ions present in $ M $ is $\frac{1}{3}$, follow these steps:
- Charge Balance Equation:
The total charge contributed by the cations ($ M $ and $ Y $) must balance the total negative charge contributed by the oxide ions $ O $:
$ x(M^{2+} + M^{3+}) + 2(Y^{3+}) = 4(-2) $
- Oxidation States and Charges:
- Let the total number of $ M $ ions be $ x $.
- Given $\frac{1}{3}$ of $ M $ ions are $ M^{2+} $, the remaining $\frac{2}{3}$ are $ M^{3+} $.
- Number of Ions:
- Number of $ M^{2+} $ ions = $\frac{x}{3}$.
- Number of $ M^{3+} $ ions = $\frac{2x}{3}$.
- Total Positive Charge:
- Charge from $ M^{2+} $ ions = $ \left(\frac{x}{3}\right) \times 2 = \frac{2x}{3} $.
- Charge from $ M^{3+} $ ions = $ \left(\frac{2x}{3}\right) \times 3 = 2x $.
- Charge from $ Y^{3+} $ ions = $ 2 \times 3 = 6 $.
- Total Positive Charge Calculation:
$ \frac{2x}{3} + 2x + 6 $
- Total Negative Charge:
- Charge from 4 oxygen ions $ (O^{2-}) $:
$ 4 \times (-2) = -8 $
- Setting Up the Charge Balance:
$ \frac{2x}{3} + 2x + 6 = 8 $
- Solving for $ x $:
$ \frac{2x}{3} + 2x + 6 = 8 $
$ \frac{2x}{3} + 2x = 2 $
$ \frac{2x + 6x}{3} = 2 $
$ \frac{8x}{3} = 2 $
$ 8x = 6 $
$ x = \frac{6}{8} $
$ x = 0.75 $
Thus, the value of $ X $ is $ \boxed{0.75} $.
Answer:Option D: 0.75
Comments (0)
