JEE Advance - Chemistry (2024 - Paper 2 Online - No. 2)

In a metal deficient oxide sample, $\mathbf{M}_{\mathbf{x}} \mathbf{Y}_2 \mathbf{O}_4$ ( $\mathbf{M}$ and $\mathbf{Y}$ are metals), $\mathbf{M}$ is present in both +2 and +3 oxidation states and $\mathbf{Y}$ is in +3 oxidation state. If the fraction of $\mathbf{M}^{2+}$ ions present in $\mathbf{M}$ is $\frac{1}{3}$, the value of $\mathbf{X}$ is _______ .
0.25
0.33
0.67
0.75

Explanation

To find the value of $ X $ in the metal deficient oxide sample $ M_x Y_2 O_4 $, where $ M $ is present in both +2 and +3 oxidation states and $ Y $ is in the +3 oxidation state, and given that the fraction of $ M^{2+} $ ions present in $ M $ is $\frac{1}{3}$, follow these steps:

  1. Charge Balance Equation:

The total charge contributed by the cations ($ M $ and $ Y $) must balance the total negative charge contributed by the oxide ions $ O $:

$ x(M^{2+} + M^{3+}) + 2(Y^{3+}) = 4(-2) $

  1. Oxidation States and Charges:

  • Let the total number of $ M $ ions be $ x $.

  • Given $\frac{1}{3}$ of $ M $ ions are $ M^{2+} $, the remaining $\frac{2}{3}$ are $ M^{3+} $.

  1. Number of Ions:

  • Number of $ M^{2+} $ ions = $\frac{x}{3}$.

  • Number of $ M^{3+} $ ions = $\frac{2x}{3}$.

  1. Total Positive Charge:

  • Charge from $ M^{2+} $ ions = $ \left(\frac{x}{3}\right) \times 2 = \frac{2x}{3} $.

  • Charge from $ M^{3+} $ ions = $ \left(\frac{2x}{3}\right) \times 3 = 2x $.

  • Charge from $ Y^{3+} $ ions = $ 2 \times 3 = 6 $.

  1. Total Positive Charge Calculation:

$ \frac{2x}{3} + 2x + 6 $


  1. Total Negative Charge:

  • Charge from 4 oxygen ions $ (O^{2-}) $:

$ 4 \times (-2) = -8 $

  1. Setting Up the Charge Balance:

$ \frac{2x}{3} + 2x + 6 = 8 $

  1. Solving for $ x $:

$ \frac{2x}{3} + 2x + 6 = 8 $

$ \frac{2x}{3} + 2x = 2 $

$ \frac{2x + 6x}{3} = 2 $

$ \frac{8x}{3} = 2 $

$ 8x = 6 $

$ x = \frac{6}{8} $

$ x = 0.75 $

Thus, the value of $ X $ is $ \boxed{0.75} $.

Answer:

Option D: 0.75

Comments (0)

Advertisement