JEE Advance - Chemistry (2024 - Paper 2 Online - No. 11)

A sample initially contains only U-238 isotope of uranium. With time, some of the U-238 radioactively decays into $\mathrm{Pb}-206$ while the rest of it remains undisintegrated.

When the age of the sample is $\mathbf{P} \times 10^8$ years, the ratio of mass of $\mathrm{Pb}-206$ to that of $\mathrm{U}-238$ in the sample is found to be 7. The value of $\mathbf{P}$ is _______.

[Given: Half-life of $\mathrm{U}-238$ is $4.5 \times 10^9$ years; $\log _e 2=0.693$ ]

Answer
143
143.28
- OR

Explanation

  1. Given Data:

  • Ratio of mass of $ \mathrm{Pb}^{206} $ to $ \mathrm{U}^{238} $ = $ \frac{7}{1} $

  • Mass of $ \mathrm{Pb}^{206} $ = 7 g

  • Mass of $ \mathrm{U}^{238} $ = 1 g

  • Half-life of $ \mathrm{U}^{238} $ = $ 4.5 \times 10^9 $ years

  • $ \log_e 2 = 0.693 $

  1. Calculate Moles:

  • Moles of $ \mathrm{Pb}^{206} $:

$ \text{Moles of } \mathrm{Pb}^{206} = \frac{7}{206} = 34 \times 10^{-3} \text{ moles} $

  • Moles of $ \mathrm{U}^{238} $:

$ \text{Moles of } \mathrm{U}^{238} = \frac{1}{238} = 4.2 \times 10^{-3} \text{ moles} $

  1. Initial Moles of $ \mathrm{U}^{238} $ ( $ N_0 $ ):

$ N_0 = \text{Moles of } \mathrm{U}^{238} \text{ initially} = \text{Moles of } \mathrm{Pb}^{206} + \text{Moles of remaining } \mathrm{U}^{238} $

$ N_0 = 34 \times 10^{-3} + 4.2 \times 10^{-3} = 38.2 \times 10^{-3} \text{ moles} $

  1. Calculate the Time:

  • Using the decay formula:

$ \lambda t = \ln \frac{N_0}{N_t} $

  • Where $ \lambda $ (decay constant):

$ \lambda = \frac{\ln 2}{t_{1/2}} = \frac{0.693}{4.5 \times 10^9 \text{ years}} $

  • Calculate $ \ln \frac{N_0}{N_t} $:

$ \ln \frac{N_0}{N_t} = \ln \frac{38.2}{4.2} = \ln 9.09 $

  • Simplify $ \ln 9.09 $:

$ \ln 9.09 \approx 2.21 $

  1. Plug in the Values:

$ t = \frac{4.5 \times 10^9 \text{ years}}{0.693} \times \ln 9.09 $

$ t = 4.5 \times 10^9 \text{ years} \times \frac{2.21}{0.693} $

$ t \approx 4.5 \times 10^9 \times 3.184 \approx 14.33 \times 10^9 \text{ years} $

  1. Convert to $ P \times 10^8 $:

$ t = P \times 10^8 \text{ years} $

$ P \times 10^8 = 14.33 \times 10^9 $

$ P = 143.28 $

Thus, the value of $ P $ is $ \boxed{143.28} $.

Comments (0)

Advertisement