JEE Advance - Chemistry (2024 - Paper 2 Online - No. 11)
A sample initially contains only U-238 isotope of uranium. With time, some of the U-238 radioactively decays into $\mathrm{Pb}-206$ while the rest of it remains undisintegrated.
When the age of the sample is $\mathbf{P} \times 10^8$ years, the ratio of mass of $\mathrm{Pb}-206$ to that of $\mathrm{U}-238$ in the sample is found to be 7. The value of $\mathbf{P}$ is _______.
[Given: Half-life of $\mathrm{U}-238$ is $4.5 \times 10^9$ years; $\log _e 2=0.693$ ]
Explanation
- Given Data:
- Ratio of mass of $ \mathrm{Pb}^{206} $ to $ \mathrm{U}^{238} $ = $ \frac{7}{1} $
- Mass of $ \mathrm{Pb}^{206} $ = 7 g
- Mass of $ \mathrm{U}^{238} $ = 1 g
- Half-life of $ \mathrm{U}^{238} $ = $ 4.5 \times 10^9 $ years
- $ \log_e 2 = 0.693 $
- Calculate Moles:
- Moles of $ \mathrm{Pb}^{206} $:
$ \text{Moles of } \mathrm{Pb}^{206} = \frac{7}{206} = 34 \times 10^{-3} \text{ moles} $
- Moles of $ \mathrm{U}^{238} $:
$ \text{Moles of } \mathrm{U}^{238} = \frac{1}{238} = 4.2 \times 10^{-3} \text{ moles} $
- Initial Moles of $ \mathrm{U}^{238} $ ( $ N_0 $ ):
$ N_0 = \text{Moles of } \mathrm{U}^{238} \text{ initially} = \text{Moles of } \mathrm{Pb}^{206} + \text{Moles of remaining } \mathrm{U}^{238} $
$ N_0 = 34 \times 10^{-3} + 4.2 \times 10^{-3} = 38.2 \times 10^{-3} \text{ moles} $
- Calculate the Time:
- Using the decay formula:
$ \lambda t = \ln \frac{N_0}{N_t} $
- Where $ \lambda $ (decay constant):
$ \lambda = \frac{\ln 2}{t_{1/2}} = \frac{0.693}{4.5 \times 10^9 \text{ years}} $
- Calculate $ \ln \frac{N_0}{N_t} $:
$ \ln \frac{N_0}{N_t} = \ln \frac{38.2}{4.2} = \ln 9.09 $
- Simplify $ \ln 9.09 $:
$ \ln 9.09 \approx 2.21 $
- Plug in the Values:
$ t = \frac{4.5 \times 10^9 \text{ years}}{0.693} \times \ln 9.09 $
$ t = 4.5 \times 10^9 \text{ years} \times \frac{2.21}{0.693} $
$ t \approx 4.5 \times 10^9 \times 3.184 \approx 14.33 \times 10^9 \text{ years} $
- Convert to $ P \times 10^8 $:
$ t = P \times 10^8 \text{ years} $
$ P \times 10^8 = 14.33 \times 10^9 $
$ P = 143.28 $
Thus, the value of $ P $ is $ \boxed{143.28} $.
Comments (0)
