JEE Advance - Chemistry (2023 - Paper 2 Online - No. 14)
The value of entropy change, $S_\beta-S_\alpha$ (in $\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ ), at $300 \mathrm{~K}$ is _______.
[Use : $\ln 2=0.69$
Given : $S_\beta-S_\alpha=0$ at $0 \mathrm{~K}$ ]
[Use : $\ln 2=0.69$
Given : $S_\beta-S_\alpha=0$ at $0 \mathrm{~K}$ ]
Answer
0.31
Explanation
$\begin{aligned} & \text { At } 1 \text { bar } \\\\ & \alpha \longrightarrow \beta\end{aligned}$
$$ \begin{aligned} & \mathrm{S}_{\alpha(600)}^{\mathrm{o}}=\mathrm{S}_{\alpha(300)}^{\mathrm{o}}+\mathrm{C}_{\mathrm{P}(\alpha)} \ln \frac{600}{300} \\\\ & \mathrm{~S}_{\beta(600)}^{\mathrm{o}}=\mathrm{S}_{\beta(300)}^{\mathrm{o}}+\mathrm{C}_{\mathrm{P}(\beta)} \ell \mathrm{n} \frac{600}{300} \\\\ & \mathrm{~S}_{\beta(600)}^{\mathrm{o}}-\mathrm{S}_{\alpha(600)}^{\mathrm{o}}=\mathrm{S}_{\beta(300)}^{\mathrm{o}}-\mathrm{S}_{\alpha(300)}^{\mathrm{o}}+\left(\mathrm{C}_{\mathrm{P}(\beta)}-\mathrm{C}_{\mathrm{P}(\alpha)}\right) \ell \mathrm{n} 2 \\\\ & 6-5=\mathrm{S}_{\beta(300)}^{\mathrm{o}}-\mathrm{S}_{\alpha(300)}^{\mathrm{o}}+1 \times \ell \mathrm{n} 2 \\\\ & 1=\mathrm{S}_{\beta(300)}^{\mathrm{o}}-\mathrm{S}_{\alpha(300)}^{\mathrm{o}}+0.69 \end{aligned} $$
So $\mathrm{S}_{\beta(300)}^{\mathrm{o}}-\mathrm{S}_{\alpha(300)}^{\mathrm{o}}=0.31$
$$ \begin{aligned} & \mathrm{S}_{\alpha(600)}^{\mathrm{o}}=\mathrm{S}_{\alpha(300)}^{\mathrm{o}}+\mathrm{C}_{\mathrm{P}(\alpha)} \ln \frac{600}{300} \\\\ & \mathrm{~S}_{\beta(600)}^{\mathrm{o}}=\mathrm{S}_{\beta(300)}^{\mathrm{o}}+\mathrm{C}_{\mathrm{P}(\beta)} \ell \mathrm{n} \frac{600}{300} \\\\ & \mathrm{~S}_{\beta(600)}^{\mathrm{o}}-\mathrm{S}_{\alpha(600)}^{\mathrm{o}}=\mathrm{S}_{\beta(300)}^{\mathrm{o}}-\mathrm{S}_{\alpha(300)}^{\mathrm{o}}+\left(\mathrm{C}_{\mathrm{P}(\beta)}-\mathrm{C}_{\mathrm{P}(\alpha)}\right) \ell \mathrm{n} 2 \\\\ & 6-5=\mathrm{S}_{\beta(300)}^{\mathrm{o}}-\mathrm{S}_{\alpha(300)}^{\mathrm{o}}+1 \times \ell \mathrm{n} 2 \\\\ & 1=\mathrm{S}_{\beta(300)}^{\mathrm{o}}-\mathrm{S}_{\alpha(300)}^{\mathrm{o}}+0.69 \end{aligned} $$
So $\mathrm{S}_{\beta(300)}^{\mathrm{o}}-\mathrm{S}_{\alpha(300)}^{\mathrm{o}}=0.31$
Comments (0)


