JEE Advance - Chemistry (2019 - Paper 2 Offline - No. 10)

The mole fraction of urea in an aqueous urea solution containing 900 g of water is 0.05. If the density of the solution is 1.2 g cm$$-$$3, then molarity of urea solution is ................

(Given data : Molar masses of urea and water are 60 g mol$$-$$1 and 18 g mol$$-$$1, respectively)
Answer
2.98

Explanation

Molarity

$$(M) = {{Number\,of\,moles\,of\,solute \times 1000} \over {Volume\,of\,solution\,(in\,mL)}}$$

Also, volume = $${{Mass} \over {Density}}$$

Given, mole fraction of urea $$({\chi _{urea}})$$ = 0.05

Mass of water = 900 g

Density = 1.2 g/cm3

$${\chi _{urea}}$$ = $${{{n_{urea}}} \over {{n_{urea}} + 50}}$$

[$$ \because $$ Moles of water = $${{900} \over {18}}$$ = 50]

$$0.05 = $$$${{{n_{urea}}} \over {{n_{urea}} + 50}}$$

$$ \Rightarrow $$ $$19{n_{urea}} = 50$$

$${n_{urea}} = 2.6315$$ moles

$${w_{urea}} = {n_{urea}} \times {(M.wt)_{urea}}$$

$$ = (2.6315 \times 60)g$$

$$V = {{2.6315 \times 60 + 900} \over {1.2}}$$

[$$ \because $$ $$Density = {{Mass\,of\,solution} \over {Volume\,of\,solution}}$$]

= 881.57 mL

Now, molarity

= $$Number\,of\,moles\,of\,solute \times {{1000} \over {Volume\,of\,solution\,(mL)}}$$

$$ = {{2.6315 \times 1000} \over {881.57}}$$ = 2.98 M

Comments (0)

Advertisement