JEE Advance - Chemistry (2015 - Paper 2 Offline - No. 3)
Explanation
Given :
$$\Lambda _{m(HX)}^c = {{\Lambda _{m(HY)}^c} \over {10}}$$
$$\Lambda _{m(HX)}^o = \Lambda _{m(HY)}^o$$ ($$\because$$ $$\lambda _{X - }^o \approx \lambda _{Y - }^o$$)
$${K_{a(HX)}} = {\left( {{{C{\alpha ^2}} \over {1 - \alpha }}} \right)_{HX}}$$
$${K_{a(HX)}} = 0.01{({\alpha _{HX}})^2}$$ ($$\because$$ $$\alpha < < < 1$$) ....... (i)
Similarly, $${K_{a(HY)}} = 0.01{({\alpha _{HY}})^2}$$ ....... (ii)
On dividing equation (i) by (ii), we get
$${{{K_{a(HX)}}} \over {{K_{a(HY)}}}} = {{0.01} \over {0.10}}{\left( {{{{\alpha _{HX}}} \over {{\alpha _{HY}}}}} \right)^2}$$ ....... (iii)
$$\alpha = {{\Lambda _m^c} \over {\Lambda _m^o}}$$
$${{{\alpha _{HX}}} \over {{\alpha _{HY}}}} = {{{{\left( {\Lambda _m^c/\Lambda _m^o} \right)}_{HX}}} \over {{{\left( {\Lambda _m^c/\Lambda _m^o} \right)}_{HY}}}} = \left( {{1 \over {10}}\Lambda _{m(HY)}^c} \right) \times {1 \over {\Lambda _{m(HY)}^c}} = {1 \over {10}}$$
Substituting above value in equation (iii),
$${{{K_{a(HX)}}} \over {{K_{a(HY)}}}} = {{0.01} \over {0.10}}{\left( {{1 \over {10}}} \right)^2} = 1 \times {10^{ - 3}}$$
$$\log {K_{a(HX)}} - \log {K_{a(HY)}} = \log (1 \times {10^{ - 3}})$$
$$ - \log {K_{a(HX)}} - ( - \log {K_{a(HY)}}) = - \log (1 \times {10^{ - 3}})$$
$$p{K_{a(HX)}} - p{K_{a(HY)}} = 3$$
Comments (0)
