JEE Advance - Chemistry (2014 - Paper 2 Offline - No. 12)

X and Y are two volatile liquids with molar weights of 10 g mol$$-$$1 and 40 g mol$$-$$1, respectively. Two cotton plugs, one soaked in X and the other soaked in Y, are simultaneously placed at the ends of a tube of length L = 24 cm, as shown in the figure. The tube is filled with an inert gas at 1 atmosphere pressure and a temperature of 300 K. Vapours of X and Y react to form a product which is first observed at a distance d cm from the plug soaked in X. Take X and Y to have equal molecular diameters and assume ideal behaviour for the inert gas and the two vapours.

X and Y are two volatile liquids with molar weights of 10 g mol$$-$$1 and 40 g mol$$-$$1, respectively. Two cotton plugs, one soaked in X and the other soaked in Y, are simultaneously placed at the ends of a tube of length L = 24 cm, as shown in the figure. The tube is filled with an inert gas at 1 atmosphere pressure and a temperature of 300 K. Vapours of X and Y react to form a product which is first observed at a distance d cm from the plug soaked in X. Take X and Y to have equal molecular diameters and assume ideal behaviour for the inert gas and the two vapours.

X and Y are two volatile liquids with molar weights of 10 g mol$$-$$1 and 40 g mol$$-$$1, respectively. Two cotton plugs, one soaked in X and the other soaked in Y, are simultaneously placed at the ends of a tube of length L = 24 cm, as shown in the figure. The tube is filled with an inert gas at 1 atmosphere pressure and a temperature of 300 K. Vapours of X and Y react to form a product which is first observed at a distance d cm from the plug soaked in X. Take X and Y to have equal molecular diameters and assume ideal behaviour for the inert gas and the two vapours.

The experimental value of d is found to be smaller than the estimate obtained using Graham's law. This is due to
larger mean free path for X as compared to that of Y.
larger mean free path for Y as compared to that of X.
increased collision frequency of Y with the inert gas as compared to that of X with the inert gas.
increased collision frequency of X with the inert gas as compared to that of Y with the inert gas.

Explanation

Collision frequency of X is greater than Y.

Comments (0)

Advertisement