JEE Advance - Chemistry (2011 - Paper 2 Offline - No. 3)
2Fe(s) + O2(g) + 4H+(aq) $$\to$$ 2Fe2+ (aq) + 2H2O (l); Eo = 1.67 V
At [Fe2+] = 10-3 M, P(O2) = 0.1 atm and pH = 3, the cell potential at 25oC is
Explanation
To find the cell potential under non-standard conditions, we can use the Nernst equation, which is given as:
$$ E = E^o - \frac{RT}{nF} \ln(Q) $$
Where:
- $$E^o$$ is the standard cell potential (1.67 V).
- $$R$$ is the gas constant (8.314 J/mol·K).
- $$T$$ is the temperature in Kelvin (298 K for 25°C).
- $$n$$ is the number of moles of electrons transferred per mole of reaction (4 in this case).
- $$F$$ is the Faraday constant (96485 C/mol).
- $$Q$$ is the reaction quotient.
The reaction quotient, $$Q$$, can be calculated based on the given conditions and the reaction:
$$ Q = \frac{[\text{Fe}^{2+}]^2}{[\text{H}^+]^4 \cdot P(O_2)} $$
Substituting the given values:
- $$[\text{Fe}^{2+}] = 10^{-3} \text{ M}$$
- $$[\text{H}^+] = 10^{-\text{pH}} = 10^{-3} \text{ M}$$
- $$P(O_2) = 0.1 \text{ atm}$$
$$ Q = \frac{(10^{-3})^2}{(10^{-3})^4 \cdot 0.1} $$
$$ Q = \frac{10^{-6}}{10^{-12} \cdot 0.1} $$
$$ Q = \frac{10^{-6}}{10^{-13}} $$
$$ Q = 10^{7} $$
Now, substituting the values into the Nernst equation:
$$ E = 1.67 \text{ V} - \frac{8.314 \times 298}{4 \times 96485} \ln(10^{7})$$
Calculating the term $$\frac{RT}{nF}$$;
$$ \frac{RT}{nF} = \frac{8.314 \times 298}{4 \times 96485} $$
$$ \approx \frac{2476}{385940} $$
$$ \approx 0.0064 \text{ V} $$
The natural logarithm of $$10^{7}$$ is about 16.1 (since $$\ln(10) \approx 2.303$$, so $$\ln(10^{7}) = 7 \times \ln(10) \approx 16.1$$).
Thus,
$$ E = 1.67 \text{ V} - 0.0064 \times 16.1$$
$$ E = 1.67 \text{ V} - 0.103 \text{ V} $$
$$ E = 1.567 \text{ V} $$
Therefore, the cell potential under the given conditions is approximately 1.57 V, so option D (1.57 V) is the correct answer.
Comments (0)
