JEE Advance - Chemistry (2001 - No. 1)
Explanation
Given, initial moles of A = 10; initial moles of B = 12. Let, the number of moles of A = n, when polymerization is arrested. Moles of solute added = 0.525.
$$\therefore$$ Total number of moles = (n + 12 + 0.525) = (n + 12.525)
$$\therefore$$ Mole fraction of $$A({x_A}) = {n \over {n + 12.525}}$$ and
Mole fraction of $$B({x_B}) = {{12} \over {n + 12.525}}$$
The total vapour pressure of the solution = $$P_A^0{X_A} + P_B^0{X_B}$$
or, $$400 = 300 \times {n \over {n + 12.525}} + 500 \times {{12} \over {n + 12.525}}$$ or, n = 9.9
For a first order reaction, $$k = {{2.303} \over t}\log {{{{[A]}_0}} \over {[A]}}$$
or, $$k = {{2.303} \over {100}}\log {a \over {a - x}} = {{2.303} \over {100}}\log {{10} \over {9.9}}$$ [$$\because$$ a $$-$$ x = n = 9.9]
or, $$k = 1.004 \times {10^{ - 4}}$$ min$$-$$1
Comments (0)
