JEE Advance - Chemistry (1996 - No. 12)

The molar volume of liquid benzene (density = 0.877 g mL-1) increases by a factor of 2750 as it vaporises at 20oC and that of liquid toluene (density = 0.867 g mL-1) increases by a factor of 7720 at 20oC. A solution of benzene and toluene at 20oC has vapour pressure of 46.0 Torr. Find the mole fraction of benzene in the vapour above the solution.
0.265
0.735
0.500
0.450
0.550

Explanation

Volume of 1 mol of benzene $$ = {{78} \over {0.877}} = 88.94$$ mL and that for 1 mol of toluene $$ = {{92} \over {0.867}} = 106.11$$ mL

At 20$$^\circ$$C, volume of 1 mol of benzene vapour $$ = 88.94 \times 2750 = 244585$$ mL = 244.58 L & that for 1 mol of toluene vapour $$ = 106.11 \times 7720 = 819.16$$ L

The vapour pressure for pure benzene, $$p_B^0 = {{nRT} \over V} = {{1 \times 0.0821 \times 293} \over {244.58}}$$ atm = 0.098 atm and that for toluene, $$p_T^0 = {{nRT} \over V} = {{1 \times 0.0821 \times 293} \over {819.16}}$$ atm = 0.029 atm

Again, total vapour pressure = VP of benzene $$\times$$ mole fraction of benzene + VP of toluene $$\times$$ mole fraction of toluene

or, $$P = p_B^0 \times {x_B} + p_T^0 \times {x_T}$$ ...... [1]

Since, $${x_B} + {x_T} = 1$$ $$\therefore$$ $${x_T} = 1 - {x_B}$$ [xB, xT are mole fractions of benzene & toluene, respectively]

Given, total vapour pressure = 46 torr $$ = {{46} \over {760}}$$ atm = 0.060 atm

From equation [1], we get, $$0.060 = 0.098 \times {x_B} + 0.029(1 - {x_B})$$

or, $$0.060 = 0.098{x_B} - 0.029{x_B} + 0.029$$

or, $${x_B} = 0.45$$ (in liquid phase)

$$\therefore$$ $${x_T} = 1 - 0.45 = 0.55$$ (in liquid phase)

$$\therefore$$ Mole fraction of benzene in vapour phase $$ = {{p_B^0 \times {x_B}} \over P} = {{0.098 \times 0.45} \over {0.060}} = 0.735$$

Comments (0)

Advertisement