JEE MAIN - Physics (2025 - 8th April Evening Shift - No. 9)
Explanation
Let’s break down the solution step by step:
First, note the given values:
Length of the wire, $$L = 3 \, \text{m}$$
Radius of the wire, $$r = 3 \, \text{mm} = 3 \times 10^{-3} \, \text{m}$$
Extension of the wire, $$\Delta L = 0.1 \, \text{mm} = 1 \times 10^{-4} \, \text{m}$$
Mass attached, $$m = 50 \, \text{kg}$$
Acceleration due to gravity, $$g = 3\pi \, \text{m/s}^2$$
The force (weight) acting on the wire is:
$$F = mg = 50 \times 3\pi = 150\pi \, \text{N}$$
Next, calculate the cross-sectional area, $$A,$$ of the wire:
$$A = \pi r^2 = \pi (3 \times 10^{-3})^2 = \pi \times 9 \times 10^{-6} = 9\pi \times 10^{-6} \, \text{m}^2$$
Young’s modulus, $$E,$$ is given by:
$$E = \frac{FL}{A \Delta L}$$
Substitute the values into the formula:
$$ E = \frac{(150\pi) \times 3}{(9\pi \times 10^{-6}) \times (1 \times 10^{-4})} $$
Simplify step by step:
Multiply in the numerator:
$$150\pi \times 3 = 450\pi$$
Multiply in the denominator:
$$9\pi \times 10^{-6} \times 1 \times 10^{-4} = 9\pi \times 10^{-10}$$
Cancel the common factor $$\pi$$ in the numerator and denominator:
$$ E = \frac{450}{9 \times 10^{-10}} $$
Divide 450 by 9:
$$ E = \frac{450}{9} \times \frac{1}{10^{-10}} = 50 \times 10^{10} = 5 \times 10^{11} \, \text{Nm}^{-2} $$
The problem states that Young's modulus can be expressed as $$P \times 10^{11} \, \text{Nm}^{-2}.$$ Here we have:
$$ P = 5 $$
Thus, the correct option is:
Option D (5).
Comments (0)
