JEE MAIN - Physics (2025 - 8th April Evening Shift - No. 6)

Figure shows a current carrying square loop ABCD of edge length is ‘a’ lying in a plane. If the resistance of the ABC part is r and that of ADC part is 2r, then the magnitude of the resultant magnetic field at centre of the square loop is

JEE Main 2025 (Online) 8th April Evening Shift Physics - Magnetic Effect of Current Question 10 English
$\frac{2\mu_0 I}{3\pi a}$
$\frac{\sqrt{2}\mu_0 I}{3\pi a}$
$\frac{3\pi\mu_0 I}{\sqrt{2}a}$
$\frac{\mu_0 I}{2\pi a}$

Explanation

JEE Main 2025 (Online) 8th April Evening Shift Physics - Magnetic Effect of Current Question 10 English Explanation

$\overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{B}}_{\mathrm{AB}}+\overrightarrow{\mathrm{B}}_{\mathrm{BC}}+\overrightarrow{\mathrm{B}}_{\mathrm{CD}}+\overrightarrow{\mathrm{B}}_{\mathrm{DA}}$

$$\begin{aligned} \overrightarrow{\mathrm{B}}= & {\left[\frac{-\mu_0(2 \mathrm{I} / 3)}{4 \pi(\mathrm{a} / 2)} \sqrt{2}-\frac{\mu_0(2 \mathrm{I} / 3)}{4 \pi(\mathrm{a} / 2)} \sqrt{2}\right.} \\ & \left.+\frac{\mu_0(\mathrm{I} / 3)}{4 \pi(\mathrm{a} / 2)} \sqrt{2}+\frac{\mu_0(\mathrm{I} / 3)}{4 \pi(\mathrm{a} / 2)} \sqrt{2}\right] \hat{\mathrm{k}} \\ \overrightarrow{\mathrm{~B}}= & {\left[\frac{-2 \sqrt{2} \mu_0 \mathrm{I}}{3 \pi \mathrm{a}}+\frac{\sqrt{2} \mu_0 \mathrm{I}}{3 \pi \mathrm{a}}\right] \hat{\mathrm{k}} } \\ \overrightarrow{\mathrm{~B}}= & \frac{-\sqrt{2} \mu_0 \mathrm{I}}{3 \pi \mathrm{a}} \hat{\mathrm{k}} \end{aligned}$$

Comments (0)

Advertisement