JEE MAIN - Physics (2025 - 8th April Evening Shift - No. 6)
Figure shows a current carrying square loop ABCD of edge length is ‘a’ lying in a plane. If the resistance of the ABC part is r and that of ADC part is 2r, then the magnitude of the resultant magnetic field at centre of the square loop is
_8th_April_Evening_Shift_en_6_1.png)
Explanation
$\overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{B}}_{\mathrm{AB}}+\overrightarrow{\mathrm{B}}_{\mathrm{BC}}+\overrightarrow{\mathrm{B}}_{\mathrm{CD}}+\overrightarrow{\mathrm{B}}_{\mathrm{DA}}$
$$\begin{aligned} \overrightarrow{\mathrm{B}}= & {\left[\frac{-\mu_0(2 \mathrm{I} / 3)}{4 \pi(\mathrm{a} / 2)} \sqrt{2}-\frac{\mu_0(2 \mathrm{I} / 3)}{4 \pi(\mathrm{a} / 2)} \sqrt{2}\right.} \\ & \left.+\frac{\mu_0(\mathrm{I} / 3)}{4 \pi(\mathrm{a} / 2)} \sqrt{2}+\frac{\mu_0(\mathrm{I} / 3)}{4 \pi(\mathrm{a} / 2)} \sqrt{2}\right] \hat{\mathrm{k}} \\ \overrightarrow{\mathrm{~B}}= & {\left[\frac{-2 \sqrt{2} \mu_0 \mathrm{I}}{3 \pi \mathrm{a}}+\frac{\sqrt{2} \mu_0 \mathrm{I}}{3 \pi \mathrm{a}}\right] \hat{\mathrm{k}} } \\ \overrightarrow{\mathrm{~B}}= & \frac{-\sqrt{2} \mu_0 \mathrm{I}}{3 \pi \mathrm{a}} \hat{\mathrm{k}} \end{aligned}$$
Comments (0)
