JEE MAIN - Physics (2025 - 8th April Evening Shift - No. 22)
Explanation
Mass of the disk, $ m = 1 \, \text{kg} $.
Initial angular velocity, $ \omega_i = 1800 \, \text{rpm} $.
Final angular velocity, $ \omega_f = 2100 \, \text{rpm} $.
External torque, $ \tau_{\text{ext}} = 25\pi \, \text{Nm} $.
Time, $ t = 40 \, \text{seconds} $.
First, convert the rotational speeds from revolutions per minute (rpm) to radians per second (rad/s):
$ \omega_i = 1800 \times \frac{2\pi}{60} = 60\pi \, \text{rad/s} $
$ \omega_f = 2100 \times \frac{2\pi}{60} = 70\pi \, \text{rad/s} $
Next, use the equation of motion for rotation to find the angular acceleration $\alpha$:
$ \omega_f = \omega_i + \alpha t $
$ 70\pi = 60\pi + \alpha(40) $
Solving for $\alpha$:
$ \alpha = \frac{70\pi - 60\pi}{40} = \frac{10\pi}{40} = \frac{\pi}{4} \, \text{rad/s}^2 $
The torque and moment of inertia relationship is given by:
$ \tau = I \alpha $
For a thin solid disk rotating along its diameter, the moment of inertia $ I $ is $ \frac{mR^2}{4} $. Thus:
$ 25\pi = \frac{1 \times R^2}{4} \times \frac{\pi}{4} $
Solving for $ R $:
$ 25\pi = \frac{\pi R^2}{16} $
$ R^2 = \frac{25\pi \times 16}{\pi} = 400 $
$ R = 20 \, \text{m} $
The diameter of the disk is:
$ \text{Diameter} = 2R = 2 \times 20 = 40 \, \text{m} $
Comments (0)
