JEE MAIN - Physics (2025 - 7th April Morning Shift - No. 11)

Uniform magnetic fields of different strengths $\left(B_1\right.$ and $\left.B_2\right)$, both normal to the plane of the paper exist as shown in the figure. A charged particle of mass $m$ and charge $q$, at the interface at an instant, moves into the region 2 with velocity $v$ and returns to the interface. It continues to move into region 1 and finally reaches the interface. What is the displacement of the particle during this movement along the interface?

JEE Main 2025 (Online) 7th April Morning Shift Physics - Magnetic Effect of Current Question 5 English

(Consider the velocity of the particle to be normal to the magnetic field and $\mathrm{B}_2>\mathrm{B}_1$ )

$\frac{m v}{q B_1}\left(1-\frac{B_1}{B_2}\right) \times 2$
$\frac{m v}{q B_1}\left(1-\frac{B_2}{B_1}\right) \times 2$
$\frac{m v}{q B_1}\left(1-\frac{B_2}{B_1}\right)$
$\frac{m v}{q B_1}\left(1-\frac{B_1}{B_2}\right)$

Explanation

As $\overrightarrow{\mathrm{v}}$ is $\perp$ to $\overrightarrow{\mathrm{B}}$, so charge particle will move in circular path, whose radius is given by

$$\mathrm{R}=\frac{\mathrm{mv}}{\mathrm{qB}}$$

JEE Main 2025 (Online) 7th April Morning Shift Physics - Magnetic Effect of Current Question 5 English Explanation

Starting point $\rightarrow \mathrm{A}$

Ending point $\rightarrow \mathrm{C}$

$\therefore$ Net displacement $=\mathrm{AC}$

$$\begin{aligned} & \mathrm{AC}=\mathrm{CD}-\mathrm{AD} \\ & \mathrm{AC}=\frac{2 \mathrm{mv}}{\mathrm{qB}_1}-\frac{2 \mathrm{mv}}{\mathrm{qB}_2} \\ & \mathrm{AC}=\frac{2 \mathrm{mv}}{\mathrm{qB}_1}\left[1-\frac{\mathrm{B}_1}{\mathrm{~B}_2}\right] \end{aligned}$$

Comments (0)

Advertisement