JEE MAIN - Physics (2025 - 4th April Morning Shift - No. 14)
A small mirror of mass $m$ is suspended by a massless thread of length $l$. Then the small angle through which the thread will be deflected when a short pulse of laser of energy E falls normal on the mirror
($\mathrm{c}=$ speed of light in vacuum and $g=$ acceleration due to gravity)
Explanation
Force due to beam assuming complete reflection $\mathrm{F}=\frac{2 \mathrm{P}}{\mathrm{C}}=\frac{2}{\mathrm{C}} \frac{\mathrm{dE}}{\mathrm{dt}} ; \mathrm{P}$ is power
So change in momentum of mirror.
$$\mathrm{m}(\mathrm{~V}-0)=\int \mathrm{Fdt}=\frac{2}{\mathrm{C}} \int \mathrm{dE}=\frac{2 \mathrm{E}}{\mathrm{C}}$$
Now using work energy theorem ....... (1)
$$\begin{aligned} & \mathrm{W}_{\mathrm{g}}=\Delta \mathrm{k} \\ & -\mathrm{mg} \ell(1-\cos \theta)=0-\frac{1}{2} \mathrm{mv}^2 \\ & \mathrm{~g} \ell\left(2 \sin ^2 \frac{\theta}{2}\right)=\frac{\mathrm{v}^2}{2} \end{aligned}$$
as $\theta$ is small
$$\begin{aligned} & \mathrm{g} \ell 2\left(\frac{\theta}{2}\right)^2=\frac{1}{2} \frac{4 \mathrm{E}^2}{\mathrm{~m}^2 \mathrm{c}^2} \quad \text{(from eq. (1))}\\ & \mathrm{~g} \ell \theta^2=\frac{4 \mathrm{E}^2}{\mathrm{~m}^2 \mathrm{c}^2} \\ & \theta=\frac{2 \mathrm{E}}{\mathrm{mc} \sqrt{\mathrm{~g} \ell}} \end{aligned}$$
Comments (0)
