JEE MAIN - Physics (2025 - 4th April Morning Shift - No. 13)
A body of mass $m$ is suspended by two strings making angles $\theta_1$ and $\theta_2$ with the horizontal ceiling with tensions $T_1$ and $T_2$ simultaneously. $T_1$ and $T_2$ are related by $T_1=\sqrt{3} T_2$, the angles $\theta_1$ and $\theta_2$ are
$\theta_1=30^{\circ} \theta_2=60^{\circ}$ with $T_2=\frac{3 \mathrm{mg}}{4}$
$\theta_1=45^{\circ} \theta_2=45^{\circ}$ with $T_2=\frac{3 m g}{4}$
$\theta_1=30^{\circ} \theta_2=60^{\circ}$ with $T_2=\frac{4 m g}{5}$
$\theta_1=60^{\circ} \theta_2=30^{\circ}$ with $T_2=\frac{m g}{2}$
Explanation
$$\begin{aligned} & \mathrm{T}_1 \sin \theta_1+\mathrm{T}_2 \sin \theta_2=\mathrm{mg} \& \mathrm{~T}_1=\sqrt{3} \mathrm{~T}_2 \\ & \Rightarrow \mathrm{~T}_2\left[\sqrt{3} \sin \theta_1+\sin \theta_2\right]=\mathrm{mg} \\ & \text { for } \theta_1=60^{\circ} \& \theta_2=30^{\circ} \\ & \mathrm{T}_2=\frac{\mathrm{mg}}{2} \end{aligned}$$
Comments (0)
