JEE MAIN - Physics (2025 - 4th April Evening Shift - No. 8)
Explanation
Calculate the Change in Temperature:
Use the formula:
$ \Delta Q = mC_v \Delta T $
Given:
$\Delta Q = 8.1 \times 10^2 \, \text{J}$
$m = 0.1 \, \text{kg}$
$C_v = 900 \, \text{J} \, \text{kg}^{-1} \, \text{K}^{-1}$
Substitute the values to find $\Delta T$:
$ 8.1 \times 10^2 = 0.1 \times 900 \times \Delta T $
Solving for $\Delta T$:
$ \Delta T = \frac{8.1 \times 10^2}{0.1 \times 900} = 9 \, \text{K} $
Calculate the Change in Area:
The change in area $\Delta A$ is calculated using:
$ \Delta A = A_0 \times 2 \alpha \Delta T $
Where:
$A_0$ is the original area of the sheet.
$\alpha = 3.1 \times 10^{-5} \, \text{K}^{-1}$.
$\Delta T = 9 \, \text{K}$.
First, calculate the original area $A_0$:
$ A_0 = l \times d = 9 \, \text{cm} \times 4 \, \text{cm} = 36 \, \text{cm}^2 = 0.0036 \, \text{m}^2 $
Now, substitute into the formula for $\Delta A$:
$ \Delta A = 0.0036 \times 2 \times 3.1 \times 10^{-5} \times 9 $
Simplifying:
$ \Delta A = 2.0 \times 10^{-6} \, \text{m}^2 $
Therefore, the change in area of the rectangular sheet is $\boxed{2.0 \times 10^{-6} \, \text{m}^2}$.
Comments (0)
