JEE MAIN - Physics (2025 - 3rd April Morning Shift - No. 6)
$$ \text { Match the LIST-I with LIST-II } $$
List - I |
List - II |
||
---|---|---|---|
A. | $$ \text { Gravitational constant } $$ |
I. | $$ \left[\mathrm{LT}^{-2}\right] $$ |
B. | $$ \text { Gravitational potential energy } $$ |
II. | $$ \left[\mathrm{L}^2 \mathrm{~T}^{-2}\right] $$ |
C. | $$ \text { Gravitational potential } $$ |
III. | $$ \left[\mathrm{ML}^2 \mathrm{~T}^{-2}\right] $$ |
D. | $$ \text { Acceleration due to gravity } $$ |
IV. | $$ \left[\mathrm{M}^{-1} \mathrm{~L}^3 \mathrm{~T}^{-2}\right] $$ |
A-IV, B-III, C-II, D-I
A-II, B-IV, C-III, D-I
A-I, B-III, C-IV, D-II
A-III, B-II, C-I, D-IV
Explanation
Here’s how each quantity lines up with its dimensional formula:
Gravitational constant, $$G$$
• From Newton’s law $$F = G\frac{m_1m_2}{r^2}$$
• $$[G] = \frac{[F]\,[r]^2}{[m]^2} = \frac{(MLT^{-2})\;L^2}{M^2} = M^{-1}L^3T^{-2}$$
⇒ IV
Gravitational potential energy, $$U$$
• As work or $$U = mgh$$
• $$[U] = [F]\,[h] = (MLT^{-2})\;L = ML^2T^{-2}$$
⇒ III
Gravitational potential, $$\phi$$
• Energy per unit mass: $$\phi = \frac{U}{m}$$
• $$[\phi] = \frac{ML^2T^{-2}}{M} = L^2T^{-2}$$
⇒ II
Acceleration due to gravity, $$g$$
• Just an acceleration
• $$[g] = LT^{-2}$$
⇒ I
Matching them gives
A–IV, B–III, C–II, D–I
That corresponds to Option A.
Comments (0)
