JEE MAIN - Physics (2025 - 3rd April Evening Shift - No. 24)
Explanation
The excess pressure inside a soap bubble is determined by the formula:
$ \Delta \mathrm{P} = \frac{4 \mathrm{~T}}{\mathrm{R}} $
where $ \Delta \mathrm{P} $ is the excess pressure, $ \mathrm{T} $ is the surface tension of the soap film, and $ \mathrm{R} $ is the radius of the bubble.
Given that the excess pressure inside bubble A is half that inside bubble B, we have:
$ \Delta \mathrm{P}_{\mathrm{A}} = \frac{1}{2} \Delta \mathrm{P}_{\mathrm{B}} $
This implies:
$ \frac{R_{\mathrm{A}}}{R_{\mathrm{B}}} = \frac{\Delta \mathrm{P}_{\mathrm{B}}}{\Delta \mathrm{P}_{\mathrm{A}}} = 2 $
Now, considering the volumes of the bubbles, the relationship between volume and radius for a sphere is given by:
$ V = \frac{4}{3} \pi R^3 $
Thus, the ratio of the volumes of bubbles A and B is:
$ \frac{V_{\mathrm{A}}}{V_{\mathrm{B}}} = \left( \frac{R_{\mathrm{A}}}{R_{\mathrm{B}}} \right)^3 = 2^3 = 8 $
Therefore, the volume of bubble A is $ n = 8 $ times the volume of bubble B.
Comments (0)
