JEE MAIN - Physics (2025 - 3rd April Evening Shift - No. 17)
Explanation
Given that the horizontal range of a projectile is three times its maximum height, we need to determine the value of $ n $ in the expression for the range $\frac{n u^2}{25 g}$.
Let's start by setting up the equations for the range and maximum height of a projectile.
The formula for the range $ R $ is:
$ R = \frac{u^2 \sin 2\theta}{g} $
The formula for the maximum height $ H_{\max} $ is:
$ H_{\max} = \frac{u^2 \sin^2 \theta}{2g} $
According to the problem, the range $ R $ is three times the maximum height $ H_{\max} $:
$ R = 3H_{\max} $
Substituting the formulas for $ R $ and $ H_{\max} $ into this condition gives:
$ \frac{u^2 \sin 2\theta}{g} = 3 \cdot \frac{u^2 \sin^2 \theta}{2g} $
Simplifying this equation, we get:
$ 2 \sin \theta \cos \theta = \frac{3}{2} \sin^2 \theta $
Using the identity $ \sin 2\theta = 2 \sin \theta \cos \theta $, we can rewrite:
$ 2 \sin \theta \cos \theta = \sin 2\theta $
This gives us:
$ \sin 2\theta = \frac{3}{2} \sin^2 \theta $
Dividing both sides by $\sin \theta$, assuming $\sin \theta \neq 0$, we have:
$ 2 \cos \theta = \frac{3}{2} \sin \theta $
Rearranging the terms to solve for $\tan \theta$, we get:
$ \tan \theta = \frac{4}{3} $
Thus, the angle $\theta$ where $\tan \theta = \frac{4}{3}$ corresponds to $\theta = 53^\circ$.
Now, substituting back into the range formula:
$ R = \frac{u^2 \cdot 2 \cdot \frac{3}{5} \cdot \frac{4}{5}}{g} $
The calculation yields:
$ R = \frac{24 u^2}{25 g} $
Therefore, the value of $ n $ in the expression $\frac{n u^2}{25 g}$ is $ n = 24 $.
Comments (0)
