JEE MAIN - Physics (2025 - 3rd April Evening Shift - No. 1)
Explanation
First, when the two vessels are connected, the water levels equalize at
$$H = \frac{H_1 + H_2}{2} = \frac{10 + 6}{2} = 8\text{ m}.$$
We can get the work done by gravity from the loss of gravitational potential energy:
Initial potential energy (taking the bottom as zero)
For a column of height $H$ and cross-section $A$,
$$U = \rho g A\int_0^H z\,dz = \frac{\rho g A H^2}{2}.$$
So
$$U_i = \frac{\rho g A}{2}\bigl(H_1^2 + H_2^2\bigr) = \frac{10^3\cdot 10\cdot 2}{2}(10^2 + 6^2) = 10^4\,(100 + 36) = 1.36\times10^6\text{ J}.$$
Final potential energy (both at height 8 m)
$$U_f = 2\;\frac{\rho g A H^2}{2}\;\Big|_{H=8} = \rho g A\,(8^2) = 10^3\cdot10\cdot2\cdot64 = 1.28\times10^6\text{ J}.$$
Work done by gravity = drop in potential energy
$$W = U_i - U_f = 1.36\times10^6 - 1.28\times10^6 = 0.08\times10^6 = 8\times10^4\text{ J}.$$
Answer: 8×10^4 J (Option C).
Comments (0)
