JEE MAIN - Physics (2025 - 2nd April Morning Shift - No. 8)

Match List I with List II.

List - I List - II
(A) Coefficient of viscosity (I) $\left[\mathrm{ML}^0 \mathrm{~T}^{-3}\right]$
(B) Intensity of wave (II) $\left[\mathrm{ML}^{-2} \mathrm{~T}^{-2}\right]$
(C) Pressure gradient (III) $\left[\mathrm{M}^{-1} \mathrm{LT}^2\right]$
(D) Compressibility (IV) $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]$

Choose the correct answer from the options given below:

(A)-(II), (B)-(III), (C)-(IV), (D)-(I)
(A)-(IV), (B)-(II), (C)-(I), (D)-(III)
(A)-(IV), (B)-(I), (C)-(II), (D)-(III)
(A)-(I), (B)-(IV), (C)-(III), (D)-(II)

Explanation

Here are the dimensional formulas:

Coefficient of viscosity, μ

$$[\mu]=\frac{\text{pressure}\times\text{time}}{} =\frac{[M\,L^{-1}T^{-2}]\,[T]}{} =[M\,L^{-1}T^{-1}]\quad\longrightarrow\text{(IV)}$$

Intensity of a wave, I

$$[I]=\frac{\text{power}}{\text{area}} =\frac{[M\,L^2T^{-3}]}{[L^2]} =[M\,L^0T^{-3}]\quad\longrightarrow\text{(I)}$$

Pressure gradient, dP/dx

$$\left[\frac{dP}{dx}\right] =\frac{[M\,L^{-1}T^{-2}]}{[L]} =[M\,L^{-2}T^{-2}]\quad\longrightarrow\text{(II)}$$

Compressibility, κ

$$[\kappa]=\frac1{[\text{pressure}]} =[M^{-1}L\,T^2]\quad\longrightarrow\text{(III)}$$

Matching gives

(A)–(IV), (B)–(I), (C)–(II), (D)–(III), i.e. Option C.

Comments (0)

Advertisement