JEE MAIN - Physics (2025 - 2nd April Morning Shift - No. 25)
Explanation
To find the average velocity given the motion of a person traveling along a straight line with two different velocities, we start by calculating the average velocity ($ v_{\text{avg}} $) using the total distance traveled divided by the total time taken.
The distances and velocities are given as follows:
Distance $ x $ at velocity $ v_1 = 5 \, \text{m/s} $
Distance $ \frac{3}{2}x $ at velocity $ v_2 $
The formula for average velocity is:
$ v_{\text{avg}} = \frac{\text{Total Distance}}{\text{Total Time}} $
Given:
$ v_{\text{avg}} = \frac{50}{7} \, \text{m/s} $
The total distance traveled is:
$ x + \frac{3x}{2} = \frac{5x}{2} $
The time taken to cover each segment is given by:
Time for $ x $: $ t_1 = \frac{x}{v_1} = \frac{x}{5} $
Time for $ \frac{3x}{2} $: $ t_2 = \frac{\frac{3x}{2}}{v_2} = \frac{3x}{2v_2} $
Now, using the formula for average velocity:
$ \frac{50}{7} = \frac{\frac{5x}{2}}{\frac{x}{5} + \frac{3x}{2v_2}} $
Simplifying the equation:
$ \frac{50}{7} = \frac{5/2}{\frac{1}{5} + \frac{3}{2v_2}} $
Cross-multiplying gives:
$ \frac{1}{5} + \frac{3}{2v_2} = \frac{7}{20} $
Solving for $ \frac{3}{2v_2} $:
$ \frac{3}{2v_2} = \frac{7}{20} - \frac{1}{5} = \frac{7-4}{20} = \frac{3}{20} $
Finally, solving for $ v_2 $:
$ \frac{3}{2v_2} = \frac{3}{20} $
$ v_2 = 10 \, \text{m/s} $
Thus, the value of $ v_2 $ is $ 10 \, \text{m/s} $.
Comments (0)
