JEE MAIN - Physics (2025 - 2nd April Morning Shift - No. 21)
Explanation
To find the elastic potential energy density of the steel wire, we need to use the given information and formulae for strain and energy density.
Given:
The length of the wire, $ \ell = 2 \, \text{m} $
Young's modulus, $ Y = 2.0 \times 10^{11} \, \text{N/m}^2 $
Poisson's ratio, $ \mu = 0.2 $
Transverse strain, $ \frac{\Delta r}{r} = 10^{-3} $
The formula for Poisson's ratio is:
$ \mu = -\frac{\left(\frac{\Delta r}{r}\right)}{\left(\frac{\Delta \ell}{\ell}\right)} $
From this, we solve for the longitudinal strain $\frac{\Delta \ell}{\ell}$:
$ \frac{\Delta \ell}{\ell} = \frac{1}{\mu} \times \left(\frac{\Delta r}{r}\right) $
Substitute the given values:
$ \frac{\Delta \ell}{\ell} = \frac{1}{0.2} \times 10^{-3} = 5 \times 10^{-3} $
The elastic potential energy density $ u $ is given by:
$ u = \frac{1}{2} Y \varepsilon_{\ell}^2 $
where $ \varepsilon_{\ell} = \frac{\Delta \ell}{\ell} $. Plug in the values:
$ u = \frac{1}{2} \times 2 \times 10^{11} \times \left(5 \times 10^{-3}\right)^2 $
Simplify further:
$ u = \frac{1}{2} \times 2 \times 10^{11} \times 25 \times 10^{-6} $
$ u = 25 \times 10^5 \, \text{(in SI units)} $
Thus, the elastic potential energy density of the wire is $ 25 \times 10^5 $ SI units.
Comments (0)
