JEE MAIN - Physics (2025 - 2nd April Morning Shift - No. 18)

A zener diode with 5 V zener voltage is used to regulate an unregulated dc voltage input of 25 V . For a $400 \Omega$ resistor connected in series, the zener current is found to be 4 times load current. The load current $\left(I_L\right)$ and load resistance $\left(R_L\right)$ are :
$\mathrm{I}_{\mathrm{L}}=0.02 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=250 \Omega$
$\mathrm{I}_{\mathrm{L}}=10 \mathrm{~A} ; \mathrm{R}_{\mathrm{L}}=0.5 \Omega$
$\mathrm{I}_{\mathrm{L}}=10 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$
$\mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=250 \Omega$

Explanation

JEE Main 2025 (Online) 2nd April Morning Shift Physics - Semiconductor Question 8 English Explanation

From the circuit diagram,

$$\begin{aligned} & 5 \mathrm{i}=\frac{20}{400}=\frac{1}{20} \mathrm{~A} \\ & \therefore \mathrm{i}=\frac{1}{100} \mathrm{~A}=10 \mathrm{~mA}=\text { Load current } \end{aligned}$$

Also, $\mathrm{V}_{\mathrm{L}}=5 \mathrm{~V}$

$$\therefore \mathrm{R}_{\mathrm{L}}=\frac{5}{10 \times 10^{-3}} \Omega=500 \Omega$$

Comments (0)

Advertisement