JEE MAIN - Physics (2025 - 29th January Morning Shift - No. 16)

As shown below, bob A of a pendulum having massless string of length 'R' is released from 60° to the vertical. It hits another bob B of half the mass that is at rest on a frictionless table in the center. Assuming elastic collision, the magnitude of the velocity of bob A after the collision will be (take g as acceleration due to gravity.)

JEE Main 2025 (Online) 29th January Morning Shift Physics - Center of Mass and Collision Question 3 English

$\frac{4}{3}\sqrt{Rg}$
$\frac{1}{3}\sqrt{Rg}$
$\sqrt{Rg}$
$\frac{2}{3}{\sqrt{Rg}}$

Explanation

JEE Main 2025 (Online) 29th January Morning Shift Physics - Center of Mass and Collision Question 3 English Explanation

Velocity of a just before hitting :

$$\mathrm{u}=\sqrt{2 \mathrm{~g} \frac{\mathrm{R}}{2}}=\sqrt{\mathrm{gR}}$$

Just after collision, let velocity of A and B are $\mathrm{v}_1$ and $v_2$ respectively

$$\therefore \text { by COM: }$$

$$\begin{aligned} & \mathrm{mu}=\mathrm{mv}_1+\frac{\mathrm{m}}{2} \mathrm{v}_2 \\ & 2 \mathrm{v}_1+\mathrm{v}_2=2 \mathrm{u} \quad\text{...... (i)}\\ & \mathrm{e}=1=\frac{\mathrm{v}_2-\mathrm{v}_1}{\mathrm{u}} \\ & \Rightarrow \mathrm{v}_2-\mathrm{v}_1=\mathrm{u} \quad\text{...... (ii)} \end{aligned}$$

From (i) -(ii)

$$\Rightarrow 3 \mathrm{v}_1=\mathrm{u} \Rightarrow \mathrm{v}_1=\frac{\mathrm{u}}{3}=\frac{1}{3} \sqrt{\mathrm{gR}}$$

Comments (0)

Advertisement