JEE MAIN - Physics (2025 - 29th January Morning Shift - No. 11)
A coil of area A and N tums is rotating with angular velocity to in a uniform magnetic field $\vec{B}$ about an axis perpendicular to $\vec{B}$. Magnetic flux $\varphi$ and induced emf $\varepsilon$ across it, at an instant when $\vec{B}$ is parallel to the plane of coil, are :
φ = AB, φ = NABω
φ = AB, φ = 0
φ = 0, ε = 0
φ = 0, ε = NABω
Explanation
$$\begin{aligned} &\begin{aligned} \phi & =\mathrm{BAN} \cdot \cos (\omega \mathrm{t}) \\ \varepsilon & =\frac{-\mathrm{d} \phi}{\mathrm{dt}}=\mathrm{BA} \omega \mathrm{~N} \cdot \sin (\omega \mathrm{t}) \end{aligned}\\ &\text { When } B \text { is parallel to plane, } \underline{\underline{\omega}} \mathrm{t}=\frac{\pi}{2}\\ &\Rightarrow \phi=0, \varepsilon=\mathrm{BA} \omega \mathrm{~N} \end{aligned}$$
Comments (0)
