JEE MAIN - Physics (2025 - 29th January Evening Shift - No. 16)
Two identical symmetric double convex lenses of focal length f are cut into two equal parts L1, L2 by AB plane and L3, L4 by XY plane as shown in figure respectively. The ratio of focal lengths of lenses L1 and L3 is
_29th_January_Evening_Shift_en_16_1.png)
Explanation
Here,
we will use lens maker formula,
$${1 \over f} = \left( {\mu - 1} \right)\left( {{1 \over {{R_1}}} - {1 \over {{R_2}}}} \right)$$
So, the focal length of L$_1$ remains the same as the original lens because the curvature of the surfaces does not change
So, $${\left( f \right)_{{L_1}}} = f$$ .... (1)
Now, for L$_3$, L$_3$ is plano-convex lens
$${R_1} = R,\,{R_2} = \infty $$
So, $${1 \over {{{\left( f \right)}_{{L_3}}}}} = \left( {\mu - 1} \right)\left( {{1 \over R} - {1 \over \infty }} \right)$$
$$ \Rightarrow {1 \over {{{\left( f \right)}_{{L_3}}}}} = \left( {\mu - 1} \right){1 \over R}$$ ..... (2)
For whole double convex lens,
$${1 \over f} = \left( {\mu - 1} \right)\left( {{1 \over R} - {1 \over { - R}}} \right)$$ (As $${R_1} = R$$, $${R_2} = - R$$)
$$ \Rightarrow {1 \over f} = \left( {\mu - 1} \right)\left( {{1 \over R} + {1 \over R}} \right)$$
$$ \Rightarrow {1 \over f} = \left( {\mu - 1} \right)\left( {{2 \over R}} \right)$$ .... (3)
From (2) and (3),
$${1 \over {{{\left( f \right)}_{{L_3}}}}} = {1 \over {2f}} \Rightarrow {\left( f \right)_{{L_3}}} = 2f$$
Hence, $${{{{\left( f \right)}_{{L_1}}}} \over {{{\left( f \right)}_{{L_3}}}}} = {f \over {2f}} \quad\text{....(from (1)})\quad= 1:2$$
Comments (0)
