JEE MAIN - Physics (2025 - 29th January Evening Shift - No. 13)
_29th_January_Evening_Shift_en_13_1.png)
Two concave refracting surfaces of equal radii of curvature and refractive index 1.5 face each other in air as shown in figure. A point object O is placed midway, between P and B. The separation between the images of O, formed by each refracting surface is :
Explanation
Using lens maker formula,
$${{{\mu _2}} \over v} - {{{\mu _1}} \over 4} = {{{\mu _2} - {\mu _1}} \over R}$$
For the image formed by the surface on the right side.
$${\mu _1} = 1,\,{\mu _2} = 1.5,\,u = {{ - R} \over 2},{R_1} = - R$$
so, $${{1.5} \over v} - {1 \over { - R/2}} = {{1.5 - 1} \over { - R}}$$
$$ \Rightarrow {{1.5} \over v} + {2 \over R} = {{ - 1} \over {2R}}$$
$$ \Rightarrow {{1.5} \over v} = {{ - 5} \over {2R}} \Rightarrow v = {{ - 3R} \over 5}$$
Here '$-$' sign tells that image is formed left to B.
So, the distance of image from $$P, = {{R - 3R} \over \Delta } = {{2R} \over 5}$$
Now, for the surface on the left side,
$${\mu _1} = 1,{\mu _2} = 1.5,\mu = {{3R} \over 2},{R_2} = R$$
So, $${{1.5} \over v} - {1 \over {{{3R} \over 2}}} = {{1.5 - 1} \over R}$$
$$ \Rightarrow {{1.5} \over v} - {2 \over {3R}} = {1 \over {2R}}$$
$$ \Rightarrow {{1.5} \over v} = {1 \over R}\left( {{1 \over 2} + {2 \over 3}} \right)$$
$$ \Rightarrow {{1.5} \over v} = {7 \over {6R}}$$
$$ \Rightarrow v = {{9R} \over 7}$$
So distance from $$P = {{9R} \over 7} - R = {{2R} \over 7}$$
So the distance between two images,
$$ = {{2R} \over 5} - {{2R} \over 7} = 0.4R - 0.2857R$$
$$ \approx 0.4R - 0.286R = 0.114R$$.
Comments (0)
