JEE MAIN - Physics (2025 - 28th January Evening Shift - No. 20)
Explanation
The energy density ($u$) between the plates of a capacitor is given by the formula:
$$ u = \frac{1}{2} \varepsilon_0 E^2 $$
where $\varepsilon_0$ is the permittivity of free space ($8.85 \times 10^{-12} \, \text{F/m}$) and $E$ is the electric field between the plates. The electric field $E$ is related to the potential difference $V$ and the separation $d$ between the plates by:
$$ E = \frac{V}{d} $$
Given:
Capacitance ($C$) = 1 µF = $1 \times 10^{-6} \, \text{F}$
Potential Difference ($V$) = 20 V
Distance ($d$) = 1 µm = $1 \times 10^{-6} \, \text{m}$
First, calculate the electric field $E$:
$$ E = \frac{V}{d} = \frac{20 \, \text{V}}{1 \times 10^{-6} \, \text{m}} = 2 \times 10^7 \, \text{V/m} $$
Now plug this into the formula for energy density:
$$ u = \frac{1}{2} \times 8.85 \times 10^{-12} \, \text{F/m} \times (2 \times 10^7 \, \text{V/m})^2 $$
Calculate $u$:
$$ u = \frac{1}{2} \times 8.85 \times 10^{-12} \times 4 \times 10^{14} $$
$$ u = 2 \times 8.85 \times 10^2 $$
$$ u = 1770 \, \text{J/m}^3 $$
This value is approximately $1.8 \times 10^3 \, \text{J/m}^3$. Therefore, the correct option is:
Option A: $1.8 \times 10^3 \, \text{J/m}^3$
Comments (0)
