JEE MAIN - Physics (2025 - 24th January Morning Shift - No. 4)
Explanation
$$ N \cos\theta - \mu N \sin\theta = mg $$
$$ N \sin\theta + \mu N \cos\theta = \frac{mv_0^2}{r} $$
Dividing the second equation by the first gives
$$ \frac{v_0^2}{r} = \frac{g\left(\sin\theta + \mu \cos\theta\right)}{\cos\theta - \mu \sin\theta}. $$
Multiplying both sides by $\cos\theta - \mu\sin\theta$ leads to
$$ \frac{v_0^2}{r}(\cos\theta - \mu \sin\theta) = g(\sin\theta + \mu \cos\theta). $$
Expanding and grouping the terms with $\mu$:
$$ \frac{v_0^2}{r}\cos\theta - g\sin\theta = \mu\left(\frac{v_0^2}{r}\sin\theta + g\cos\theta\right). $$
Thus, solving for $\mu$:
$$ \mu = \frac{\frac{v_0^2}{r}\cos\theta - g\sin\theta}{\frac{v_0^2}{r}\sin\theta + g\cos\theta}. $$
Multiplying the numerator and the denominator by $r$ gives
$$ \mu = \frac{v_0^2\cos\theta - rg\sin\theta}{v_0^2\sin\theta + rg\cos\theta}. $$
Dividing both the numerator and denominator by $\cos\theta$ (assuming $\cos\theta \neq 0$):
$$ \mu = \frac{v_0^2 - rg\tan\theta}{v_0^2\tan\theta + rg}. $$
This result matches the expression
$$ \mu=\frac{v_0^2 - rg\,\tan\theta}{rg + v_0^2\,\tan\theta}. $$
Thus, the correct answer is:
Option C
Comments (0)
