JEE MAIN - Physics (2025 - 24th January Morning Shift - No. 13)
A parallel plate capacitor was made with two rectangular plates, each with a length of $l=3 \mathrm{~cm}$ and breath of $\mathrm{b}=1 \mathrm{~cm}$. The distance between the plates is $3 \mu \mathrm{~m}$. Out of the following, which are the ways to increase the capacitance by a factor of 10 ?
A. $l=30 \mathrm{~cm}, \mathrm{~b}=1 \mathrm{~cm}, \mathrm{~d}=1 \mu \mathrm{~m}$
B. $l=3 \mathrm{~cm}, \mathrm{~b}=1 \mathrm{~cm}, \mathrm{~d}=30 \mu \mathrm{~m}$
C. $l=6 \mathrm{~cm}, \mathrm{~b}=5 \mathrm{~cm}, \mathrm{~d}=3 \mu \mathrm{~m}$
D. $l=1 \mathrm{~cm}, \mathrm{~b}=1 \mathrm{~cm}, \mathrm{~d}=10 \mu \mathrm{~m}$
E. $l=5 \mathrm{~cm}, \mathrm{~b}=2 \mathrm{~cm}, \mathrm{~d}=1 \mu \mathrm{~m}$
Choose the correct answer from the options given below:
Explanation
The capacitance of a parallel plate capacitor is given by
$$ C = \frac{\epsilon_0 A}{d}, $$
where:
$$\epsilon_0$$ is the permittivity of free space,
$$A$$ is the area of a plate, and
$$d$$ is the separation between the plates.
A change in the capacitor’s dimensions will change its capacitance by a factor of
$$ \frac{C_{\text{new}}}{C_{\text{initial}}} = \frac{A_{\text{new}}}{A_{\text{initial}}} \cdot \frac{d_{\text{initial}}}{d_{\text{new}}}. $$
The initial dimensions are:
Length: $$l = 3\,\text{cm} = 0.03\,\text{m},$$
Breadth: $$b = 1\,\text{cm} = 0.01\,\text{m},$$
Hence, the original area is
$$ A_{\text{initial}} = 0.03 \times 0.01 = 3 \times 10^{-4}\,\text{m}^2, $$
Plate separation: $$d_{\text{initial}} = 3\,\mu\text{m} = 3 \times 10^{-6}\,\text{m}.$$
For each modification, we compare the new factor:
Case C:
New dimensions:
$$l = 6\,\text{cm} = 0.06\,\text{m}, \quad b = 5\,\text{cm} = 0.05\,\text{m}.$$
New area:
$$ A_{\text{new}} = 0.06 \times 0.05 = 3 \times 10^{-3}\,\text{m}^2. $$
Ratio of areas:
$$ \frac{A_{\text{new}}}{A_{\text{initial}}} = \frac{3 \times 10^{-3}}{3 \times 10^{-4}} = 10. $$
The plate separation is unchanged:
$$ \frac{d_{\text{initial}}}{d_{\text{new}}} = \frac{3 \times 10^{-6}}{3 \times 10^{-6}} = 1. $$
Overall factor:
$$ 10 \times 1 = 10. $$
Case E:
New dimensions:
$$l = 5\,\text{cm} = 0.05\,\text{m}, \quad b = 2\,\text{cm} = 0.02\,\text{m}.$$
New area:
$$ A_{\text{new}} = 0.05 \times 0.02 = 1 \times 10^{-3}\,\text{m}^2. $$
Ratio of areas:
$$ \frac{A_{\text{new}}}{A_{\text{initial}}} = \frac{1 \times 10^{-3}}{3 \times 10^{-4}} \approx 3.33. $$
New plate separation:
$$d_{\text{new}} = 1\,\mu\text{m} = 1 \times 10^{-6}\,\text{m},$$
so the ratio of separations is
$$ \frac{d_{\text{initial}}}{d_{\text{new}}} = \frac{3 \times 10^{-6}}{1 \times 10^{-6}} = 3. $$
Overall factor:
$$ 3.33 \times 3 \approx 10. $$
Both Case C and Case E yield a capacitance that is 10 times the original value.
Thus, the correct modifications are those in Case C and Case E.
Comments (0)
