JEE MAIN - Physics (2025 - 24th January Morning Shift - No. 10)

Consider a parallel plate capacitor of area A (of each plate) and separation ' $d$ ' between the plates. If $E$ is the electric field and $\varepsilon_0$ is the permittivity of free space between the plates, then potential energy stored in the capacitor is
$\varepsilon_0 \mathrm{E}^2 \mathrm{Ad}$
$\frac{3}{4} \varepsilon_0 \mathrm{E}^2 \mathrm{Ad}$
$\frac{1}{4} \varepsilon_0 \mathrm{E}^2 \mathrm{Ad}$
$\frac{1}{2} \varepsilon_0 \mathrm{E}^2 \mathrm{Ad}$

Explanation

$$ u = \frac{1}{2}\varepsilon_0 E^2 $$

The energy density of an electric field in free space is given by the expression above. For a parallel plate capacitor with plate area $$A$$ and separation $$d$$, the volume between the plates is

$$ V = Ad. $$

Multiplying the energy density by the volume gives the total energy stored:

$$ U = u \times V = \frac{1}{2}\varepsilon_0 E^2 \times Ad = \frac{1}{2}\varepsilon_0 E^2 Ad. $$

Thus, the potential energy stored in the capacitor is

$$ \frac{1}{2}\varepsilon_0 E^2 Ad. $$

This corresponds to the option:

$$ \text{Option D: } \frac{1}{2}\varepsilon_0 E^2 Ad. $$

Comments (0)

Advertisement