JEE MAIN - Physics (2025 - 23rd January Evening Shift - No. 4)
Explanation
We can solve this using Hooke's Law, which states:
$$F = kx,$$
where:
• $$F$$ is the force (tension),
• $$k$$ is the spring constant, and
• $$x$$ is the extension of the spring.
Follow these steps:
For the first scenario (extension $$x_1$$ under 5 N):
$$5 = kx_1 \quad \Rightarrow \quad k = \frac{5}{x_1}.$$
For the second scenario (extension $$x_2$$ under 7 N):
$$7 = kx_2 \quad \Rightarrow \quad k = \frac{7}{x_2}.$$
Equate the two expressions for $$k$$:
$$\frac{5}{x_1} = \frac{7}{x_2} \quad \Rightarrow \quad \frac{x_1}{x_2} = \frac{5}{7} \quad \Rightarrow \quad x_2 = \frac{7}{5}x_1.$$
To find the tension for the extension of $$\left(5x_1 - 2x_2\right)$$, use Hooke's Law again:
$$\text{Tension, } F = k \left(5x_1 - 2x_2\right).$$
Substitute $$k = \frac{5}{x_1}$$:
$$F = \frac{5}{x_1} \left(5x_1 - 2x_2\right).$$
Substitute the expression for $$x_2$$:
$$F = \frac{5}{x_1} \left(5x_1 - 2\left(\frac{7}{5}x_1\right)\right) = \frac{5}{x_1} \left(5x_1 - \frac{14}{5}x_1\right).$$
Simplify the expression inside the parentheses:
$$5x_1 - \frac{14}{5}x_1 = \left(\frac{25}{5} - \frac{14}{5}\right)x_1 = \frac{11}{5}x_1.$$
Now substitute back:
$$F = \frac{5}{x_1} \cdot \frac{11}{5}x_1 = 11 \text{ N}.$$
Thus, the tension in the spring for the extension $$\left(5x_1-2x_2\right)$$ is $$11 \text{ N}.$$
The correct option is Option C.
Comments (0)
