JEE MAIN - Physics (2024 - 8th April Evening Shift - No. 18)
Explanation
To determine the new angular velocity of the system, we use the principle of conservation of angular momentum. When no external torque acts on a system, its angular momentum remains constant. Let's denote the initial angular momentum and the final angular momentum, respectively, as $$L_{\text{initial}}$$ and $$L_{\text{final}}$$.
The initial angular momentum of the system is given by:
$$ L_{\text{initial}} = I_{\text{initial}} \cdot \omega $$
Here, $$I_{\text{initial}}$$ is the moment of inertia of the first disc. For a thin circular disc, the moment of inertia about its center is:
$$ I_{\text{initial}} = \frac{1}{2} M R^2 $$
Thus,
$$ L_{\text{initial}} = \left( \frac{1}{2} M R^2 \right) \omega $$
When the second disc is placed gently on the first disc, the two discs rotate together with a common angular velocity $$\omega'$$. The moment of inertia of the second disc is:
$$ I_{\text{second}} = \frac{1}{2} \left( \frac{M}{2} \right) R^2 = \frac{1}{4} M R^2 $$
The combined moment of inertia of the system after placing the second disc is:
$$ I_{\text{final}} = I_{\text{initial}} + I_{\text{second}} = \frac{1}{2} M R^2 + \frac{1}{4} M R^2 = \frac{3}{4} M R^2 $$
Thus, the final angular momentum of the system is:
$$ L_{\text{final}} = I_{\text{final}} \cdot \omega' = \left( \frac{3}{4} M R^2 \right) \omega' $$
By the conservation of angular momentum:
$$ L_{\text{initial}} = L_{\text{final}} $$
This simplifies to:
$$ \left( \frac{1}{2} M R^2 \right) \omega = \left( \frac{3}{4} M R^2 \right) \omega' $$
Solving for $$\omega'$$:
$$ \omega' = \frac{\left( \frac{1}{2} M R^2 \right) \omega}{\left( \frac{3}{4} M R^2 \right)} = \frac{\omega}{\frac{3}{2}} = \frac{2}{3} \omega $$
So, the new angular velocity of the system is:
$$\omega' = \frac{2}{3} \omega$$
Thus, the correct answer is:
Option D: $$\frac{2}{3} \omega$$
Comments (0)
